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We present a new version of the fast multipole method (FMM) for screened
Coulomb interactions in three dimensions. Existing schemes can compute such in-
teractions in O(N ) time, where N denotes the number of particles. The constant
implicit in the O(N ) notation, however, is dominated by the expense of translating
far-field spherical harmonic expansions to local ones. For each box in the FMM
data structure, this requires 189p4 operations per box, where p is the order of the
expansions used. The new formulation relies on an expansion in evanescent plane
waves, with which the amount of work can be reduced to 40p2 + 6p3 operations
per box. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In the last few years, new versions of the fast multipole method (FMM) have been
developed for the evaluation of harmonic potential fields in three dimensions. The schemes
of [4, 10], for example, are extremely efficient in the evaluation of pairwise interactions in
large ensembles of particles:

�(x j ) =
N∑

i=1
i �= j

qi

‖x j − xi‖ , (1)
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where x1, x2, . . . , xN are points in R3 and q1, q2, . . . , qN are the corresponding charge
strengths. The algorithm of [4] requires O(N ) work and breaks even with the direct cal-
culation at about N = 750 for three-digit precision, N = 1500 for six-digit precision, and
N = 2500 for nine-digit precision.

While all fast multipole schemes require the repeated translation of far-field multipole
expansions to local ones, the original method of [7, 9] required p4 operations per translation,
where harmonics up to order p2 have been retained. In the new schemes, one first converts
the multipole expansion to a plane wave expansion, then translates the plane wave expansion
diagonally (at a cost of p2 operations), and finally converts the plane wave expansion back
to a local expansion.

In this paper, we extend the plane-wave approach to more general expressions of the form

�(x j ) =
N∑

i=1
i �= j

qi · e−λ‖x j −xi ‖

‖x j − xi‖ , (2)

where λ ∈ R. The governing interaction e−λr/r is Green’s function for the partial differential
equation

∇2� − λ2� = f (x) (3)

in R3.
Such calculations arise in various problems in physics, chemistry, and biology when

Coulomb forces are damped by screening effects. In nuclear physics, Green’s function is
referred to as the Yukawa potential. Equation (3) occurs in implicit marching schemes for
the heat equation, in Debye–Huckel theory, and in linearization of the Poisson–Boltzmann
equation [13, 14, 17]. Applications of the FMM in some of these settings will be reported
at a later date. Here, we concentrate on describing the mathematical and algorithmic issues
involved in evaluating the function �(x) in (2) as efficiently as possible.

The paper is organized as follows. In Section 2, we summarize the classical theory of
multipole expansions for screened Coulomb potentials. In Section 3, we describe the plane
wave representation of such potentials, and in Section 4, we describe a simple version of
the FMM. In Section 5, we illustrate the performance of the method with several numerical
examples. For a review of FMM-type methods and a more thorough discussion of the
literature, we refer the reader to [10]. We should note here, however, the recent work of
Boschitsch et al. [3], who give (to the best of our knowledge) the first detailed description
of an FMM for (2). Their scheme, however, does not take into account the plane wave
representation and relies on classical expansions. It should be noted that the FMM for high-
frequency scattering [6, 16, 18] cannot be used for the case of interest in this paper. It relies
on a very elegant diagonal form, but it is numerically unstable when applied to screened
electrostatics.

2. MATHEMATICAL PRELIMINARIES

In this section, we describe the (classical) multipole and local representations for screened
Coulomb potentials. For further details, see [1, 10, 12, 15].
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Let Pn(x) denote the usual Legendre polynomial of degree n. Then the spherical har-
monics of degree n and order m can be defined according to the formula

Y m
n (θ, φ) =

√
2n + 1

4π

√
(n − |m|)!
(n + |m|)! · P |m|

n (cos θ)eimφ, (4)

where the associated Legendre functions Pm
n are defined by Rodrigues’ formula

Pm
n (x) = (−1)m(1 − x2)m/2 dm

dxm
Pn(x).

DEFINITION 2.1. The modified spherical Bessel and modified spherical Hankel functions
in(r), kn(r) are defined in terms of the usual Bessel function Jν(z) via

Iν(r) = i−ν Jν(ir) (i = √−1),

Kν(r) = π

2 sin νπ
[I−ν(r) − Iνr ],

in(r) =
√

π

2r
In+1/2(r),

kn(r) =
√

π

2r
Kn+1/2(r).

In particular,

k0(λr) = π

2

e−λr

λr
.

Using these special functions, we can conveniently describe the far field induced by a
collection of point sources.

THEOREM 2.1 (Multipole Expansion). Suppose that N sources of strengths q1, q2, . . . ,

qN are located at points x1, x2, . . . , xN with spherical coordinates (ρ1, α1, β1), (ρ2, α2,

β2), . . . , (ρN , αN , βN ), respectively. Suppose further that the points x1, x2, . . . , xN are loca-
ted inside a sphere of radius a centered at the origin. Then, for any point x = (r, θ, φ) ∈ R3

with r > a, the potential �(x), generated by the sources q1, q2, . . . , qN , is given by the
formula

�(x) =
N∑

i=1

qi · e−λ‖x j −xi ‖

‖x j − xi‖ = 2λ

π

N∑
i=1

qi · k0(λ‖x j − xi‖)

=
∞∑

n=0

n∑
m=−n

Mm
n kn(λr) · Y m

n (θ, φ), (5)

where

Mm
n = 8λ

N∑
i=1

qi · in(λρi ) · Y −m
n (αi , βi ). (6)

Furthermore, ∣∣∣∣∣�(x) −
p∑

n=0

n∑
m=−n

Mm
n kn(λr) · Y m

n (θ, φ)

∣∣∣∣∣= O

(
a

r

)p

. (7)
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In full implementations of the FMM, one also needs to be able to describe the field locally
when the sources themselves are far away.

THEOREM 2.2 (Local Expansion). Suppose that N sources of strengths q1, q2, . . . , qN

are located at the points x1, x2, . . . , xN in R3 with spherical coordinates (ρ1, α1, β1),

(ρ2, α2, β2), . . . , (ρN , αN , βN ), respectively. Suppose further that all the points x1, x2, . . . ,

xN are located outside the sphere Sa of radius a centered at the origin. Then, for any point
x ∈ Sa with coordinates (r, θ, φ), the potential �(x) generated by the sources q1, q2, . . . , qN

is described by the local expansion

�(x) =
∞∑
j=0

j∑
k=− j

Lk
j i j (λr) · Y k

j (θ, φ), (8)

where

Lk
j = 8λ

N∑
l=1

ql k j (λρl) · Y −k
j (αl , βl). (9)

Furthermore,

∣∣∣∣∣�(x) −
p∑

j=0

j∑
k=− j

Lk
j i j (λr) · Y k

j (θ, φ)

∣∣∣∣∣= O

(
r

a

)p

. (10)

Theorems 2.1 and 2.2 follow easily from Graf’s addition theorem [1].

Remark 2.1. An important aspect of working with modified Bessel function expansions
concerns scaling. Since Kn(λr) ≈ (λr)−n and In(λr) ≈ (λr)n , a naive use of such expansions
is likely to encounter underflow and overflow issues. To avoid this, one must scale expan-
sions, replacing Mm

n with Mm
n /σ n and Lm

n with Lm
n · σ n . To compensate for this scaling, we

replace kn with kn · σ n and in with in/σ
n when evaluating expansions. The parameter σ is

chosen to be approximately λr , and the evaluation of the scaled terms for small σ is based
on asymptotic expansions. This scaling must be carried through the entire fast multipole
analysis described below, but we omit the details—the formulas are involved enough as
they are.

2.1. Multipole and Local Translation Operators

The FMM relies on a variety of translation operators, acting on either multipole (far field)
or solid harmonic (local) expansions. For the Laplace equation, the analogous operators are
described in [4, 7, 10]. The proofs are straightforward but tedious.

THEOREM 2.3 (Multipole Translation). Suppose that N charges of strengths q1, q2, . . . ,

qN are located inside the sphere D of radius a centered at x0 = (ρ, α, β). Suppose further
that for any point x = (r, θ, φ) ∈ R3\D, the potential due to these charges is given by the
multipole expansion

�(x) =
∞∑

n=0

n∑
m=−n

Om
n kn(λr ′) · Y m

n (θ ′, φ′), (11)
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where (r ′, θ ′, φ′) are the spherical coordinates of the vector x − x0. Then, for any point
x = (r, θ, φ) outside the sphere D1 of radius (a + ρ) centered at the origin, the field can be
described by a shifted multipole expansion:

�(x) =
∞∑

n=0

n∑
m=−n

Mm
n kn(λr) · Y m

n (θ, φ). (12)

Moreover,

∣∣∣∣∣�(x) −
p∑

n=0

n∑
m=−n

Mm
n kn(λr) · Y m

n (θ, φ)

∣∣∣∣∣= O

(
a + ρ

r

)p

. (13)

The linear operator mapping the old multipole coefficients {Om
n } to the new multipole

coefficients {Mm
n } will be denoted TMM.

THEOREM 2.4 (Conversion of a Multipole Expansion to a Local Expansion). Suppose
that N charges of strengths q1, q2, . . . , qN are located inside the sphere DX0 of radius
a centered at the point X0 = (ρ, α, β), and that ρ > (c + 1)a for some c > 1. Then the
corresponding multipole expansion (11) converges inside the sphere D0 of radius a centered
at the origin. Furthermore, for any point X ∈ D0 with coordinates (r, θ, φ), the potential
due to the charges q1, q2, . . . , qN can be described by a local expansion of the form

�(x) =
∞∑
j=0

j∑
k=− j

Lk
j i j (λr) · Y k

j (θ, φ). (14)

Furthermore, for any p ≥ 1,

∣∣∣∣∣�(x) −
p∑

j=0

j∑
k=− j

Lk
j i j (λr) · Y k

j (θ, φ)

∣∣∣∣∣ = O

(
1

c

)p+1

. (15)

The linear operator mapping the multipole coefficients {Mm
n } to the local coefficients {Lm

n }
will be denoted TML .

THEOREM 2.5 (Local Translation). Suppose that N charges of strengths q1, q2, . . . , qN

are located outside the sphere D of radius a centered at the origin. Suppose further that
for any point x = (r, θ, φ) ∈ D, the potential due to these charges is given by the local
expansion

�(x) =
p∑

n=0

n∑
m=−n

Lm
n in(λr) · Y m

n (θ, φ). (16)

If x0 = (ρ, α, β) ∈ D, then the field in the neighborhood of x0 can be described by a local
expansion of the form

�(x) =
p∑

n=0

n∑
m=−n

N m
n in(λr ′) · Y m

n (θ ′, φ′), (17)
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where (r ′, θ ′, φ′) are the spherical coordinates of the vector x − x0. Assuming ρ + r ′ < a,

we also have

∣∣∣∣∣�(x) −
p∑

n=0

n∑
m=−n

N m
n in(λr ′) · Y m

n (θ ′, φ′)

∣∣∣∣∣= O

(
r

a

)p

. (18)

The linear operator mapping the old local coefficients {Lm
n } to the new local coefficients

{N m
n } will be denoted TL L .

Remark 2.2. The explicit formulas for TMM, TML, and TLL are extremely complex and we
omit them. Moreover, the matrices representing the operators are dense, so that applying
them to truncated expansions with O(p2) coefficients costs O(p4) operations. For both
ease of analysis and speed of computation, it is advantageous to apply TMM, TML, and TLL

in factored form.

We require three lemmas.

LEMMA 2.1. Consider the multipole expansion (11) with respect to the center x0 =
(ρ, α, β). If we rotate the coordinate system so that the z-axis is aligned with the spherical
angle (α, β), then there exist coefficients R(n, m, m ′, α, β) such that

�(x) =
∞∑

n=0

n∑
m ′=−n

Õm ′
n kn(λr ′) · Y m ′

n (θ ′′, φ′′),

where (r ′, θ ′′, φ′′) are the new coordinates of x and

Õm ′
n =

n∑
m=−n

R(n, m, m ′, α, β)Om
n . (19)

The operator defined in the preceding expression we denote R(α, β). We refer the reader
to [2] for a complete discussion of rotation matrices and for a variety of methods which can
be used to compute the matrix entries R(n, m, m ′, α, β).

LEMMA 2.2. Suppose the multipole expansion (11) is centered at a point x0 which lies
along the z-axis at a distance ρ from the origin. Then the coefficients of the shifted expansion
(12) are given by

Mm
n =

∞∑
n′=m

Cn,n′
m · Mm

n′ , (20)

where

Cn,n′
m =

min(n,n′)∑
k=m

(
1

2

)k

(−1)n′+k(2n′ + 1)
(n′ − m)!(n + m)!(2k)!(λρ)−kin′ + n−k(λρ)

(k + m)!(k − m)!(n′ − k)!(n − k)!k!
. (21)

We denote the corresponding translation operator by T z
MM(ρ).
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LEMMA 2.3. Suppose x0 lies along the z-axis at a distance ρ from the origin. Then the
coefficients of the shifted expansion (17) are given by

Lm
n =

∞∑
n′=m

Cn,n′
m · Om

n′ , (22)

where

Cn,n′
m =

min(n,n′)∑
k=m

(
1

2

)k

(2n′ + 1)
(n′ − m)!(n + m)!(2k)!(λρ)−kin′+n−k(λρ)

(k + m)!(k − m)!(n′ − k)!(n − k)!k!
. (23)

We denote the corresponding translation operator by T z
LL(ρ).

Proof of Lemmas 2.2 and 2.3. Formula (21) follows from Graf’s addition theorem [1]
and some algebraic manipulation. It can also be deduced from the analysis of partial wave
expansions in [5].

Combining Lemmas 2.1, 2.2, and 2.3, we see that a multipole or local expansion can be
translated for a cost proportional to p3 by the following procedure. First, rotate the system
of coordinates so that the new z-axis points to the desired translation center. Then, translate
the expansion via (20) or (22). Finally, rotate the translated expansion back to the original
system of coordinates. Each of the three stages requires O(P3) operations. Formally, the
scheme we have outlined corresponds to the factorizations

TMM = [R(α, β)]−1 ◦ T z
MM(ρ) ◦ R(α, β), (24)

TLL = [R(α, β)]−1 ◦ T z
LL(ρ) ◦ R(α, β), (25)

where (ρ, α, β) is the desired shifting direction.
It is possible to factor TML in a similar manner, but the corresponding numerical scheme

is only marginally more efficient than the (naive) unfactored one. Instead, we introduce a
completely different representation.

2.2. The Plane Wave Representation

The new generation of FMMs is based on introducing an additional approximation tool:
exponential, or “plane wave” expansions. Given a source point P = (x0, y0, z0) and a target
location Q = (x, y, z), with z > z0 and r = ‖P − Q‖, we begin with the formula [15]

k0(λr) = π

2

e−λr

λr
= 1

4λ

∫ ∞

0
e−(u+λ)(z−z0)

∫ 2π

0
ei

√
u2+2uλ((x−x0) cos α+(y−y0) sin α)dα du. (26)

We approximate the integral in (26) via an appropriately chosen quadrature formula. For
the outer u integral, we use the weights and nodes derived in [19] for the harmonic case
(λ = 0). For the inner α integral, we use the trapezoidal rule.

LEMMA 2.4. Suppose that Q = (x0, y0, z0) and P = (x, y, z) are points in R3, and that
r = ‖P − Q‖. Suppose further that the coordinates (x − x0, y − y0, z − z0) of the vector
P − Q satisfy the conditions

1 ≤ z − z0 ≤ 4, 0 ≤
√

(x − x0)2 + (y − y0)2 ≤ 4
√

2. (27)
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Then, for any desired precision ε, we can write

λ

∣∣∣∣∣k0(λr) −
s(ε)∑
k=1

wk

Mk

Mk∑
j=1

e−(uk+λ)·(z−z0) · ei
√

u2
k+2ukλ·[(x−x0)·cos(α j,k )+(y−y0)·sin(α j ,k)]

∣∣∣∣∣< ε, (28)

where the integers s(ε) and the triplets {Mk, wk, uk |k = 1, . . . , s(ε)} all depend on ε, and
where α j,k = 2π j/Mk. The total number of exponential basis functions used in (28) will be
denoted

Sexp =
s(ε)∑
k=1

Mk . (29)

The conditions (27) appear to be rather special. They are, however, related to the geometric
refinement of space introduced by the FMM and their use will become clear in the next
section.

The actual weights and nodes used are available in [4, 10, 19]. We reproduce only those
needed for three-digit accuracy here in the Appendix, which shows that 114 exponentials are
required. For 6- and 11-digit accuracy, 454 and 1868 exponentials are required, respectively.
In all cases, a factor of two savings can be obtained by making use of the fact that k0(λr) is
real; from obvious symmetry considerations, one need only use the nodes with α restricted
to [0, π ].

The following corollary provides an expansion of the form (28) for the potential generated
by a collection of charges. It is an immediate consequence of Lemma 2.4.

COROLLARY 2.1. Suppose that N charges of strengths q1, q2, . . . , qN are located
at points X1, X2, . . . , X N in R3 with Cartesian coordinates (x1, y1, z1), (x2, y2, z2), . . . ,

(xN , yN , zN ), respectively. Suppose further that all points X1, X2, . . . , X N are inside a
cubic box b with unit volume centered at the origin and that the vector X = (x, y, z) ∈ R3

satisfies the conditions (27). Let �(X) denote the potential generated by the charges
q1, q2, . . . , qN and let �ε be defined by the formula

�ε(X) =
s(ε)∑
k=1

Mk∑
j=1

W (k, j) · e−(uk+λ)z · ei
√

u2
k+2ukλ·(x ·cos(α j,k )+y·sin(α j,k )), (30)

with the coefficients W (k, j) given by the formula

W (k, j) = wk

Mk

N∑
l=1

ql · e(uk+λ)zl · e−i
√

u2
k+2ukλ·(xl ·cos(α j,k )+yl ·sin(α j ,k)), (31)

for all k = 1, . . . , s(ε), j = 1, . . . , Mk. Then, if A = ∑N
l=1 |ql |, we have the estimate

|�(X) − λ�ε(X)| < Aε. (32)

3. DATA STRUCTURES AND DIAGONAL TRANSLATION OPERATORS

For the sake of completeness, we briefly summarize the data structures used by the FMM,
following the discussion of [4, 10].
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The computational domain is defined to be the smallest cube in R3 containing all sources.
We refer to this box as refinement level 0 and build a hierarchy of boxes recursively.
Refinement level l + 1 is obtained from level l by the subdivision of each box at level l into
eight cubic boxes of equal size. In the nonadaptive case, this process is halted after roughly
log8 N levels, where N is the total number of sources under consideration.

DEFINITION 3.1. A box c is said to be a child of box b if box c is obtained by a single
subdivision of box b. Box b is said to be the parent of box c.

Two boxes are said to be colleagues if they are at the same refinement level and share a
boundary point. (A box is considered to be a colleague of itself.) The set of colleagues of a
box b will be denoted Coll(b).

Two boxes are said to be well separated if they are at the same refinement level and are
not colleagues.

With each box b is associated an interaction list, consisting of the children of the col-
leagues of b’s parent, which are well separated from box b (Fig. 1).

Note that a box can have up to 27 colleagues and that its interaction list contains up to
189 boxes. Figure 1 depicts the colleagues and interaction list of a box in a two-dimensional
setting.

The interaction list for each box will be further subdivided into six lists, associated with
the six coordinate directions (+z, −z, +y, −y, +x, −x). We will refer to the +z direction
as up, the −z direction as down, the +y direction as north, the −y direction as south, the
+x direction as east, and the −x direction as west.

DEFINITION 3.2 (Direction Lists). The Uplist for a box b consists of those elements of
the interaction list which lie above b and are separated by at least one box in the +z-direction
(Fig. 2).

The Downlist for a box b consists of those elements of the interaction list which lie below
b and are separated by at least one box in the −z-direction.

The Northlist for a box b consists of those elements of the interaction list which lie north
of b, are separated by at least one box in the +y-direction, and are not contained in the
Up- or Downlists.

FIG. 1. The colleagues of a (two dimensional) box b are darkly shaded, while its interaction list is indicated
in white. In three dimensions, a box b has up to 27 colleagues and its interaction list contains up to 189 boxes.
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FIG. 2. The Uplist for the box b (see Definition 3.2).

The Southlist for a box b consists of those elements of the interaction list which lie south
of b, are separated by at least one box in the −y-direction, and are not contained in the Up-
or Downlists.

The Eastlist for a box b consists of those elements of the interaction list which lie east
of b, are separated by at least one box in the +x-direction, and are not contained in the
Up-, Down-, North-, or Southlists.

The Westlist for a box b consists of those elements of the interaction list which lie west
of b, are separated by at least one box in the −x-direction, and are not contained in the Up-,
Down-, North-, or Southlists.

For any box b, we will denote the number of elements in its Uplist by N (Uplist(b)) and
adopt a similar convention for each of the remaining five lists.

It is easy to verify that the original interaction list is equal to the union of the Up-, Down-,
North-, South-, East-, and Westlists. It is also easy to verify for two boxes, b, c, that

c ∈ Uplist(b) ⇔ b ∈ Downlist(c),
c ∈ Northlist(b) ⇔ b ∈ Southlist(c),

c ∈ Eastlist(b) ⇔ b ∈ Westlist(c).
(33)

Furthermore, suppose that two boxes, b and c, are of unit volume and that c ∈ Uplist(b).
Then for any point X0 = (x0, y0, z0) ∈ b and any point X = (x, y, z) ∈ c, the vector X −
X0 = (x − x0, y − y0, z − z0) satisfies the inequality

1 ≤ z − z0 ≤ 4, 0 ≤
√

(x − x0)2 + (y − y0)2 ≤ 4
√

2. (34)

This is precisely the condition (27) in Lemma 2.4.

3.1. Plane-Wave-Based Translation Operators

In three-dimensional fast multipole schemes, the operator TML (converting multipole
expansions into local ones) is applied much more frequently then the operators TMM, TLL,
which shift multipole and local expansions. Ignoring boundary effects, one ends up applying
TML to the multipole expansion for each box in the interaction list—about 189 times when
the charge distribution is uniform. The operators TMM, TLL, on the other hand, are applied
roughly once per box. In the algorithm of this paper, the operators TMM, TLL are applied
via the order p3 scheme described in Section 2.1; TML is applied by means of a much more
complicated procedure, involving the plane wave representation introduced in Lemma 2.4.



652 GREENGARD AND HUANG

Remark 3.1. A somewhat involved analysis shows that under the conditions of
Lemma 2.4, s(ε) ∼ p, where p is chosen according to (7) to achieve the same accuracy
using a multipole expansion. Likewise, the total number of exponential basis functions Sexp

in (30) is approximately the same as the total number of multipole moments (p2) in order
that the two expansions provide the same precision ε.

Expansions of the form (30) will be referred to as exponential expansions. Their main
utility is that translation takes a particularly simple form.

THEOREM 3.1 (Diagonal Translation). Suppose that a function �ε(X) : R3 �→ C is de-
fined by the formula (30), which we view as an expansion centered at the origin for
X = (x, y, z). Then, for any vector X0 = (x0, y0, z0) ∈ R3, we have the shifted expansion

�ε(X) =
s(ε)∑
k=1

Mk∑
j=1

V (k, j) · e−(uk+λ)(z−z0) · ei
√

u2
k+2ukλ·((x−x0)·cos(α j,k )+(y−y0)·sin(α j,k )), (35)

where

V (k, j) = W (k, j) · e−(uk+λ)z0 · ei
√

u2
k+2ukλ·(x0·cos(α j,k )+y0·sin(α j,k )) (36)

for k = 1. . . . , s(ε), j = 1, . . . , Mk .

DEFINITION 3.3. Formula (36) defines a linear operator mapping the coefficients
{W (k, j)} to the coefficients {V (k, j)}. This linear operator will be denoted Dexp.

The operator Dexp provides a tool for translating expansions of the form (30) at a cost
of O(Sexp) ∼ O(p2) operations. In FMM algorithms, however, it is more efficient to use
multipole and local expansions for communication between levels. Thus, to be able to use
the diagonal translation operator Dexp, linear operators converting multipole expansions
into exponential expansions and exponential expansions into local expansions have to be
constructed. The following two theorems provide such operators.

THEOREM 3.2. Suppose that N charges of strengths q1, q2, . . . , qN are located inside
a box b of volume d3 centered at the origin, that ε is a positive real number, and that p is
an integer such that for any point X ∈ Uplist(b) with spherical coordinates (r, θ, φ), the
potential �(X) generated by the charges q1, q2, . . . , qN satisfies the inequality∣∣∣∣∣�(X) −

p∑
n=0

n∑
m=−n

Om
n · Y m

n (θ, φ)kn(λr)

∣∣∣∣∣ < ε. (37)

Then∣∣∣∣∣�(X) − λ

s(ε)∑
k=1

Mk∑
j=1

W (k, j) · e−(uk+λ)·(z/d) · ei
√

uk+2ukλ·((x/d)·cos(α j,k )+(y/d)·sin(α j,k ))

∣∣∣∣∣= O(ε),

(38)

where (x, y, z) are the Cartesian coordinates of X and

W (k, j) = πwk

2dλMk

p∑
m=−p

i |m| · eim·α j,k

p∑
n=|m|

Om
n

√
2n + 1

4π

√
(n − |m|)!
(n + |m|)! P |m|

n

(
λ + uk

λ

)
(39)

for k = 1, . . . , s(ε), j = 1, . . . , Mk.



FMM FOR SCREENED COULOMB INTERACTIONS 653

Proof. Suppose that fn(x1, . . . , x p) is a homogeneous rational algebraic function of de-
gree n, and that F(x) is a smooth function of one variable. If we let r2 = x2

1 + x2
2 + · · · + x2

p,
then ([11], p. 126)

fn

(
∂

∂x1
, . . . ,

∂

∂x p

)
F(r2) =

{
2n dn F

d(r2)n
+ 2n−2

1!

dn−1 F

d(r2)n−1
∇2 + · · ·

+ 2n−2m

m!

dn−m F

d(r2)n−m
∇2m + · · ·

}
fn(x1, x2, . . . , x p), (40)

where ∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2
+ · · · + ∂2

∂x2
p
. The result now follows by choosing {F(r2) = k0(ωr),

fn = rn P |m|
n (cos θ)eimφ}, and a lot of algebra.

DEFINITION 3.4. Formula (39) defines a linear operator converting the coefficients {Om
n }

into the coefficients {W (k, j)}. This linear mapping will be denoted CMX.

THEOREM 3.3. Suppose that N charges of strengths q1, q2, . . . , qN are located inside a
box b of volume d3 centered at the origin, that ε is a positive real number, and that for any
point X = (x, y, z) ∈ Uplist(b), the potential �(X) generated by the charges q1, q2, . . . , qN

satisfies the inequality∣∣∣∣∣�(X) − λ

s(ε)∑
k=1

Mk∑
j=1

W (k, j) · e−(uk+λ)·(z/d) · ei
√

u2
k+2ukλ·((x/d)·cos(α j,k )+(y/d)·sin(α j,k ))

∣∣∣∣∣ < ε.

(41)

Then there exists an integer p such that∣∣∣∣∣�(X) −
p∑

n=0

n∑
m=−n

Lm
n · in(λr) · Y m

n (θ, φ)

∣∣∣∣∣ = O(ε), (42)

where (r, θ, φ) are the spherical coordinates of X with respect to the box center and

Lm
n = (−1)ni |m|√4π

√
2n + 1

√
(n − |m|)!
(n + |m|)!

s(ε)∑
k=1

P |m|
n

(
uk + λ

λ

) Mk∑
j=1

W (k, j) · eim·α j,k ,

(43)

for n = 0, . . . , p, m = − n, . . . , n.

Proof. The desired formula (43) is obtained from a Taylor expansion of each exponential
term in (41) and some algebraic manipulation.

DEFINITION 3.5. Formula (43) defines a linear operator converting the coefficients
{W (k, j)} into the coefficients {Lm

n }. This linear mapping will be denoted CXL.

Remark 3.2. It is easy to see that (39) can be evaluated numerically for k = 1, . . . ,

s(ε), j = 1, . . . , Mk , at a cost proportional to p3. Indeed, we first calculate (2p + 1) · s(ε)
quantities Fk,m defined by the formula

Fk,m =
p∑

n=|m|
Om

n

√
2n + 1

4π

√
(n − |m|)!
(n + |m|)! P |m|

n

(
λd + uk

λd

)
, (44)
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for k = 1, . . . , s(ε), m = −p, . . . , p. This step requires O(s(ε) · p2) operations. We then
evaluate the coefficients W (k, j) via the formula

W (k, j) = πwk

2λd Mk

p∑
m=−p

i |m| · eim·α j,k · Fk,m, (45)

for k = 1, . . . , s(ε), j = 1, . . . , Mk , at a cost of O(Sexp · p) operations. Thus, the total cost
of applying the operator CMX to a pth-order multipole expansion is

Cost(CMX) ∼ O(p2s(ε) + pSexp) ∼ O(p3), (46)

making use of Remark 3.1. A similar argument shows that the operator CXL can also be
evaluated numerically for a cost proportional to p3.

Remark 3.3 (Multipole to Local Translation for the Uplist). Suppose that b, c are two
boxes such that c is in the Uplist of b. Then the translation operator TML which converts a
multipole expansion centered in b to a local expansion centered in c can be factored as

TML = CXL ◦ Dexp ◦ CMX. (47)

Remark 3.4 (Multipole to Local Translation: General Case). The decomposition (47)
of the operator TML is valid only when box c is in the Uplist of box b. When box c is not
in the Uplist of box b, the operator TML can easily be applied by first rotating the system
of coordinates, so that in the new coordinate system, box c lies in the Uplist of box b. This
corresponds to the factorization

TML =R(α, β)−1 ◦ CXL ◦ Dexp ◦ CMX ◦ R(α, β), (48)

where (α, β) describes the spherical angle of rotation.

4. THE FAST MULTIPOLE ALGORITHM

Remark 4.1. The procedure of the preceding section has been further accelerated. Sym-
metry considerations can be used to reduce the number of translations per box from 189 to
40 without any loss of precision. We refer the reader to [10] for details.

ALGORITHM.

[Comment The parent of a box j will be denoted p( j). The list of children of a box j

will be denoted c( j). For each box j , the “outgoing” exponential expansion with coefficients
{W (n, m)}, n = 1, . . . , s(ε); m = 1, . . . , M(n), will be denoted W j . We will also associate an
“incoming” exponential expansion with each box, denoted Vj .]

Upward Pass

Initialization

[Comment Choose the number of refinement levels n ≈ log8 N , and the desired order p of
the multipole expansion. The number of boxes at the finest level is then 8n , and the average
number of particles per box is s = N/(8n).]
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Step 1

Form the multipole expansions �n,i of the potential field due to particles in each box about
the box center at the finest mesh level, via Theorem 2.1.

Step 2

Do for levels l = n − 1, . . . , 2,
Form multipole expansions �l, j about the center of each box at level l by
merging expansions from its eight children via Theorem 2.3.

�l, j = ∑
k∈child( j) TMM�l+1,k.

(In applying TMM, use the factorization of equation (25).)
End do

Downward Pass

Initialization

Set �1,1 = �1,2 = · · · = �1,8 = (0, 0, . . . , 0).

Step 3A

Do for levels l = 2, . . . , n,
Form the expansion �̃l, j for each box j at level l by using Theorem 2.5 to
shift the local � expansion of j ’s parent to j itself.

�̃l, j = TLL�l−1,p( j).

(In applying TL L , use the factorization of equation (25).)
Set �l, j = �̃l, j .

Step 3B

[Comment For each direction Dir = Up, Down, North, South, East, West, the opposite direction
will be denoted −Dir, so that −Up = Down, −Down = Up, etc. Thus, if a box B sends an
outgoing expansion in direction Dir to box C on its Dirlist, then C can be viewed as receiving
the expansion from B which is an element of its −Dirlist (see Eq. (32)).]

Do for Dir = Up, Down, North, South, East, West,
For each box j at level l, convert the multipole expansion �l, j

into the “outgoing” exponential expansion for direction Dir.

W j = CDir
MX�l, j .

For each box j at level l, collect the “outgoing” exponential
expansions from the −Dirlist of box j as an “incoming”
exponential expansion

Vj = ∑k∈−Dirlist Dk̃ j Wk,

where Dk̃ j is the appropriately scaled vector from the center of box k to
the center of box j in the rotated coordinate system.
For each box j at level l, convert the accumulated “incoming” exponential
expansion Vj into a local harmonic expansion and add result to �l, j .

�l, j = �l, j + CDir
XL Vj .

End do
End do
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Step 4

For each particle in each box j at the finest level n,
evaluate �n, j at the particle position.

Step 5

For each particle in each box j at the finest level n,
compute interactions with particles in near neighbor boxes directly.

Remark 4.2. Step 1 requires approximately N p2 work. Steps 2 and 3A require (N/s)3p3

work. In Step 3B, the applications of the multipole to exponential operators CDir
MX and the

exponential-to-local-operators CDir
XL require a total of approximately 20p3(N/s) work, while

the exponential translations require approximately 40p2(N/s) work. Step 4 requires N p2

work, and Step 5 requires 27N p work. Thus, a reasonable estimate for the total operation
count (where we set the parameter s = p) is

67N p + 25N p2. (49)

With naive translation operators (requiring O(p4) work), the optimized estimate would be
216N p2, having set the parameter s = p2.

Remark 4.3. The reader may have noticed that we have disregarded one vital issue,
namely that the plane wave quadratures are designed for a box of unit dimensions. This
requires an appropriate rescaling at every level of the FMM hierarchy. This is done on the
fly, in the application of the “interlevel” translation operators TMM and TLL. For optimal
performance, we also precompute and store all of the exponentials needed at each level of
the hierarchy.

5. NUMERICAL RESULTS

The algorithm described in Section 4 has been implemented in Fortran 77, and numerical
experiments have been carried out for charges distributed randomly but uniformly in the
cube [−0.5, 0.5]3 using a 440 MHz Sun Ultra 10 workstation. The results of our experiments
are summarized in Table I, with all timings given in seconds.

TABLE I

Timing Results for the FMM with Charges Uniformly Distributed

in a Cube and λ = 1

N Levels p Sexp T f mm Tdir Error

1,000 3 9 57 0.23 0.4 2.3 × 10−4

8,000 4 9 57 1.9 26 3.5 × 10−4

64,000 5 9 57 24 (1660) 1.6 × 10−4

1,000 3 16 227 0.57 0.4 6.7 × 10−7

10,000 4 16 227 5.4 48 7.3 × 10−7

100,000 5 16 227 83 (4800) 6.8 × 10−7

1,000 3 30 934 2.7 0.4 8.5 × 10−12

10,000 3 30 934 13.8 48 6.3 × 10−12

50,000 4 30 934 84 (1200) 7.1 × 10−12
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Numerical tests were performed with 3-, 6-, and 11-digit accuracy and the timings pro-
duced by the FMM were compared with those obtained by direct calculation. Because of
obvious CPU considerations, it was not practical to apply the direct scheme to large-scale
ensembles of particles. Thus, the direct algorithm was used to evaluate the potentials at
100 elements of the ensemble, and the resulting CPU time was extrapolated. Similarly, the
accuracy of the algorithm was calculated at those 100 locations via the formula

E =
(∑N

i=1 |�(xi ) − �̃(xi )|2∑N
i=1 |�(xi )|2

)1/2

. (50)

The following observations can be made from these tables.

1. The algorithm breaks even with the direct calculation at about N = 750 for three-digit
precision, N = 1500 for six-digit precision, and N = 5000 for 11-digit precision.

2. The actual CPU time required by the nonadaptive FMM algorithm grows approx-
imately linearly with the number of particles N . Because we are computing free-space
interactions, there is a mild boundary effect at play; particles at the periphery of the unit
cube are involved in fewer direct interactions than those near the center. As the number of
levels increases, the relative number of such particles decreases, giving the (false) impres-
sion of slightly superlinear growth.

We have carried out similar studies for λ in the range [10−9, 103]. The timing results vary
by at most 20% from those listed in Table I. Larger values of λ involve such rapid decay
that interactions can be effectively ignored.

6. CONCLUSIONS

We have described an FMM for screened Coulomb interactions based on a new diagonal
form for translation operators. It is an extension of the “modern” FMM for the Laplace
equation [4, 10]. Applications in biophysical simulations will be reported at a later date. An
analogous procedure can be carried out for the Helmholtz equation at low frequency. The
relevant plane–wave representation can be found in [8].

TABLE II

Nodes, Weights, and M3
k for Three-Digit Accuracy

k Node Weight M3
k

1 0.09927399673971 0.24776441819008 4
2 0.47725674637049 0.49188566500464 8
3 1.05533661382183 0.65378749137677 12
4 1.76759343354008 0.76433038408784 16
5 2.57342629351471 0.84376180565628 20
6 3.44824339201583 0.90445883985098 20
7 4.37680983554726 0.95378613136833 24
8 5.34895757205460 0.99670261613218 8
9 6.35765785313375 1.10429422730252 2
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APPENDIX

The nodes and weights needed for discretization of the outer integral in Lemma 2.4
with three-digit accuracy are presented in Table II. Column 4 contains the number of
discretization points needed in the inner integral, which we denote Md

k . Tables for higher
accuracy can be found in [4, 19].
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